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 It is imperative to assess psychometric parameters of tests and items by methodologically sound 

approaches and finding relationships among the psychometric qualities. The paper describes 

methods of computations of psychometric parameters of MCQ test and items under classical test 

theory, finds relationships among theoretically defined test reliability with factorial validity (FV) and 

separately with discriminating and difficulty values of test and items considering the entire data. 

Finding r_(tt(theoretical))  from a single administration offers significant benefits like computation 

of test error variance; testingH_0: r_(tt(theoretical))=1; finding battery reliability, estimation of true 

scores and its confidence interval. Relationships of r_(tt(theoretical))  derived with FV of 

standardized scores (〖FV〗_(Z-scores)), test discriminating value (〖Disc〗_T), Cronbach alpha in 

terms of item discriminating value 〖(Disc〗_i) and  〖Disc〗_T, Item reliability as function of 〖Diff

〗_i  and 〖Disc〗_T, alpha using PCA results (α_PCA) with 〖FV〗_(Z-scores). The point of 

inflection of the negatively slopped reliability - discriminating value curve gives 〖Disc〗_T for 

which test reliability is optimal; Common point of 〖Disc〗_iand 〖Diff〗_i  curves could be used in 

item deletions to improve test reliability. 

 Keywords:  

Theoretical reliability, ıtem reliability, battery reliability, factorial validity, discriminating value, 

eigenvalues 

 1. Introduction 

Various scales and tests used in Educational Research for assessment in different educational streams, 

especially at the end of academic sessions, learning outcomes, and for selection purposes, which are MCQ type 

tests containing multiple-choice questions where a credit of “1” is given if the item is correct answered 

correctly and “0” for incorrect answer or omitted item. In addition, Likert scales and rating are also used in 

educational research to assess intensity and direction of respondents' feelings, to reveal important insights. 

Each type of tool uses sum of item scores to get test scores. Thus, the  generated data consist of count of 

responses in each category of an item and score of an individual as sum of such responses give at best rank 

order information. Evaluation of internal structure of the test/scale is difficult by summative scores of items 

(Crutzen & Peters, 2017) and such scoring can affect reliability, validity of the test and classification using cut-

off points (McNeish and Wolf 2020).  

National Education Policy (NEP) 2020, Government of India is a game-changer which emphasizes learning 

assessment, testing of skills like analytical, critical thinking, conceptual clarity etc. It is imperative to assess 

psychometric parameters of such tests and constituent items by methodologically sound approaches and also 

to find relationships among the psychometric qualities related to tests.  

Researchers use different methods to find test reliability (𝑟𝑡𝑡) and none is in conformity to the definition as 

𝑟𝑡𝑡 =
𝑆𝑇

2

𝑆𝑋
2   where 𝑆𝑇

2 and 𝑆𝑋
2 denote respectively variance of true score and observed score. Test reliability in terms 
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of Test-retest reliability (𝑟𝑇𝑒𝑠𝑡−𝑟𝑒𝑡𝑒𝑠𝑡), Split-half reliability (𝑟𝑔ℎ), coefficients like Cronbach’s alpha (𝛼), 

McDonald's Omega (ω), etc. differ from theoretical definition of reliability and produce different results.   

While, the popular Cronbach’s alpha indicates consistency of scale over time periods, over different forms, 

and raters (Miller et al., 2013), test-retest reliability requiring two administrations reflects stability of a test, 

value of which differs with changes in time-interval between the two administrations. Its assumption of 

unchanged true scores during the time gap is not tenable due to effects of practice, learning during the time 

gap and potential minor differences in testing situations, etc. There is no consensus on time gap. 

𝑟𝑇𝑒𝑠𝑡−𝑟𝑒𝑡𝑒𝑡  could be high even if there is poor or no agreements. For example, if retest-score = 𝛼 ± 𝛽(𝑡𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒), 

there will be no agreement but 𝑟𝑇𝑒𝑠𝑡−𝑟𝑒𝑡𝑒𝑡 will be very high and close to unity. Berchtold (2016) used agreement 

unlike Jelenchick et al. (2012) who focused on correlation for 𝑟𝑇𝑒𝑠𝑡−𝑟𝑒𝑡𝑒𝑡 .   

Split-half reliability (𝑟𝑔ℎ)is based on correlation between the two sub-tests obtained by dichotomizing the test 

scores in two parallel subtests (g-th and h-th) defined as unchanged true score of i-th individual i.e. 𝑇𝑖𝑔= 𝑇𝑖ℎ 

implying 𝑋𝑔
̅̅ ̅ = 𝑋ℎ

̅̅ ̅ and 𝑋𝑔
2 = 𝑋ℎ

2 which are commonly tested by t-test and F-test respectively. Such tests may be 

invalidated by presence of heteroscedastic errors, non-satisfaction of normally distributed data. 𝑟𝑔ℎ  as 

correlation between the two parallel sub-tests, depends on methods to dichotomize the original test scores and 

in many cases, parallality of the sub-tests is assumed without verifications through statistical tests. There is no 

universally agreed way of splitting a test in parallel valves. Thus, different values of Split-half reliability are 

possible for a test and for the same sample.Inter-item reliability considers the arithmetic mean (AM) of inter-

item correlations (Cohen & Swerdlik, 2010). However, addition of correlations are not meaningful. Thus, AM 

of correlations of items and test scores is not meaningful (Garcia, 2012). Sample-driven mean of correlations 

between items and test scores was not favoured (Field, 2003). Similarly, average factor-loadings is not a 

meaningful standalone metric. 

Computation of Cronbach’s alpha needs pre-checking of its assumptions like uni-dimensionality and tau-

equivalence i.e. equal factor loadings of items, which is  rare for tests being used in educational research (Pronk 

et al. 2022). In real life, assumptions of alpha are not complied and different factor loadings are realistic (Teo 

and Fan, 2013). Moreover, outliers in the data affects alpha. There exists high number of reported cases on 

misuse of Cronbach’s alpha (Cho & Kim, 2015; Sijtsma, 2009; Sijtsma & Pfadt, 2021). Trizano-Hermosilla and 

Alarado (2016) used Monte Carlo simulation to compare different measures of reliability and found that 

McDonald's Omega (ω) defined as 𝜔 = 
(∑ 𝜆𝑖)2

(∑ 𝜆𝑖)2+∑ 𝜃𝑖
 performed better than alpha where for the i-th item, 𝜆𝑖 denotes 

factor loading and 𝜃𝑖 represents the error variance. Omega does not require tau-equivalence assumption but 

assumes a unidimensional factor model. Computation of omega requires undertaking of Confirmatory Factor 

Analysis (CFA) first. Thus, factors affecting fitting of CFA model also affect value of omega. For small sample 

size, fitting of CFA model is difficult (Gagne & Hancock, 2006) and estimate of 𝜔 may be biased (Edwards et 

al., 2021). If data fit is problematic, estimation of omega is problematic and “should not be used” for reliability 

estimation (McDonald, 2011). Omega performed worse than α for: small samples, smaller number of items 

(test length), low factor loadings and weak inter-item correlations (Orcan 2023). Most measures of test 

reliability fail to satisfy ideal standards in decision making (Charter, 2003). Use of standard error of 

measurement (SEM) instead of test reliability was preferred (Zimmerman, 2007; Tighe et al. 2010). Reliability 

of battery of tests like Common Aptitude test (CAT), Differential Aptitude Tests (DAT), Primary Mental 

Abilities (PMA), tests to measure learning outcomes, achievement tests, etc. are multi-dimensional and violate 

assumption of alpha. In addition, cumulative measurement error of the component tests gets increased for the 

battery.  

Test validity is commonly expressed as 𝑟𝑋𝑌  where test score and criterion score are denoted by X and Y 

respectively. Different choice of criterion score, different distributions of X and Y and mismatches of constructs 

being measured by X and Y may distort value of 𝑟𝑋𝑌 . Question arises whether it is validity for X or Y? If 𝑟𝑋𝑌 is 

high, what is the need for the test? If a test measures more than one factor, 𝑟𝑋𝑌 is the validity of which factors? 

Can we have test validity irrespective of criterion scores? One solution is offered by Factorial validity (FV) as 

ratio of the highest factor loading to the sum of all the factor loadings (Lozano et al. 2008). 

Discriminating power of i-th item and the test in terms of their values (𝐷𝑖𝑠𝑐𝑖and 𝐷𝑖𝑠𝑐𝑇) and their relationships 

including relationships with test reliability and validity are not usually reported as quality of a test. 
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Responsiveness indicates ability of a test to measure accurately the changes in score across time for a person 

or a group of persons and may be interpreted as longitudinal validity (Mokkink et al. 2021).  

The paper describes methods of computations of quality psychometric parameters of MCQ test and items 

under classical test theory (CTT), finds relationships among such psychometric parameters including 

relationships of theoretically defined test reliability with FV and separately with difficulty/discriminating 

value of items and tests based on the entire data.  

Table 1: Symbol/notation table  

Variables Denoted by capital letters like: X, T, E respectively for observed score, True score, Error score 

Values taken 

by a variable 

Denoted by small letters like: 𝑥𝑖 , 𝑡𝑖 , 𝑒𝑖, etc.  

Individual scores in the sub-tests are: 𝑥𝑖𝑔, 𝑥𝑖ℎ and corresponding true scores: 𝑡𝑖𝑔,

𝑡𝑖ℎ;  and error scores: 𝑒𝑖𝑔, 𝑒𝑖ℎ  

Statistic 

Mean of the test by 𝑋̅, 𝑇̅, 𝐸̅; and mean for the sub-tests:  𝑋𝑔
̅̅ ̅, 𝑋ℎ

̅̅̅̅  etc.  

Sample variance by 𝑆𝑋
2, 𝑆𝑇

2, 𝑆𝐸
2; For the sub-tests: 𝑆𝑋𝑔

2 , 𝑆𝑋ℎ

2  

Variance of a battery of tests by 𝑆𝑇(𝐵𝑎𝑡𝑡𝑒𝑟𝑦)
2  

Population variance by 𝜎𝑋
2, 𝜎𝑇

2, etc. 

Sample correlation by  𝑟𝑋𝑇 , 𝑟𝑇𝐸 , 𝑟𝑇𝐸, 𝑟𝐸1𝐸2
, 𝑟𝑔ℎ 

Population correlation by 𝜌𝑋𝑋𝑔
, 𝜌𝑋𝑋ℎ

 

Reliability 

𝑟𝑡𝑡; Reliability of the i-th test by 𝑟𝑡𝑡(𝑖) 

Theoretical reliability by 𝑟𝑡𝑡(𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙)= 
𝑆𝑇

2

𝑆𝑋
2 = 1 −

𝑆𝐸
2

𝑆𝑋
2   

Reliability of a battery of tests by 𝑟𝑡𝑡(𝑏𝑎𝑡𝑡𝑒𝑟𝑦) 

Vector 

By capital letter in bold like: 𝑿𝒈, 𝑿𝒉, 𝑬𝒈, 𝑬𝒉,  

Identity vector as 𝑰 = (1, 1, … … 1)𝑇, Vector of weights as 𝑾 

Length of vectors by ‖𝑋𝑔‖, ‖𝑋ℎ‖, ‖𝐼‖ 

Matrix By capital letter like𝑺𝒌×𝒌 for matrix with k-rows and k-columns 

Estimates Estimates of true scores (𝑇̂) 

2. Reliability as Per Definition 

For a test, CTT assumes observed score X = T + E where 𝐸̅ = 0; 𝑟𝑇𝐸 = 0 and 𝑟𝐸1𝐸2
= 0 Chakrabartty et al.(2024) 

dichotomized a test taken by N-individuals in two parallel sub-tests where 𝑡𝑖𝑔 = 𝑡𝑖ℎ and 𝑆𝑒𝑔
=𝑆𝑒ℎ

 and proposed 

finding theoretical reliability of a test.  

Here, score of i-th subject 𝑥𝑖 = 𝑥𝑖𝑔 + 𝑥𝑖ℎ ⟹ 𝑡𝑖𝑔 + 𝑒𝑖𝑔 +  𝑡𝑖ℎ + 𝑒𝑖ℎ  

⟹ 𝑥𝑖𝑔 − 𝑥𝑖ℎ = 𝑒𝑖𝑔 − 𝑒𝑖ℎ 

⟹ ‖𝑋𝑔‖
2

+ ‖𝑋ℎ‖2 − 2‖𝑋𝑔‖‖𝑋ℎ‖𝐶𝑜𝑠𝜃𝑔ℎ = ‖𝐸𝑔‖
2

+ ‖𝐸ℎ‖2 − 2‖𝐸𝑔‖‖𝐸ℎ‖𝐶𝑜𝑠𝜃𝑔ℎ
(𝐸)

 

where ‖𝑋𝑔‖ = √∑ 𝑥𝑔𝑖
2 and ‖𝑋ℎ‖= √∑ 𝑥ℎ𝑖

2 denote respectively length of the vectors 𝑿𝒈and 𝑿𝒉 representing 

scores of the g-th subtest and h-th subtest respectively, 𝜃𝑔ℎ is the angle between the vectors 𝑿𝒈 and 𝑿𝒉 and 

𝜃𝑔ℎ
(𝐸)

is the angle between the unknown vectors 𝐸𝑔 and 𝐸ℎ.  

𝜃𝑔ℎ can be found as 𝐶𝑜𝑠𝜃𝑔ℎ= 
𝑋𝑔

𝑇𝑋ℎ

‖𝑋𝑔‖ ‖𝑋ℎ‖
 

But 𝑟𝐸𝑔,𝐸ℎ
= 0 for two parallel tests. Thus, 

‖𝑋𝑔‖
2

+ ‖𝑋ℎ‖2 − 2‖𝑋𝑔‖‖𝑋ℎ‖𝐶𝑜𝑠𝜃𝑔ℎ = ‖𝐸𝑔‖
2

+ ‖𝐸ℎ‖2 = 𝑁. 𝑆𝐸
2 

⟹ 𝑆𝐸
2 =

1

𝑁
[‖𝑋𝑔‖

2
+ ‖𝑋ℎ‖2 − 2‖𝑋𝑔‖‖𝑋ℎ‖𝐶𝑜𝑠𝜃𝑔ℎ]      (1) 

Theoretical test reliabilit is  𝑟𝑡𝑡(𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) = 1 −
𝑆𝐸

2

𝑆𝑋
2        (2) 

Considering g-th and h-th tests are parallel, equation (1) and (2) can be further simplified as 

𝑆𝐸
2 =

2‖𝑋𝑔‖
2

 (1−𝐶𝑜𝑠𝜃𝑔ℎ)

𝑁
  and        (3)  

 𝑟𝑡𝑡(𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) = 1 −
2‖𝑋𝑔‖

2
 (1−𝐶𝑜𝑠𝜃𝑔ℎ)

𝑁𝑆𝑋
2          (4) 
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Avoiding assumptions of alpha, theoretical reliability as per (4) better handles the outliers amongst the test 

items, when compared to Cronbach alpha i.e. addition or removal of items with 

extreme scores, gives similar results in 𝑟𝑡𝑡(𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) than alpha.  

Empirical verification:  

 𝑟𝑡𝑡(𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) depends heavily on procedure of dichotomizing the test to two parallel sub-tests. Chakrabartty 

et al. (2024) presented an iterative process of splitting a MCQ test minimizing absolute difference of g-th 

vector(𝑿𝒈) and h-th vector (𝑿𝒉) using Bayesian learning of the item scores ensuring 𝑋𝑔
̅̅ ̅ = 𝑋ℎ

̅̅ ̅  and   𝑆𝑔
2 ≈ 𝑆ℎ

2. 

Such dichotomization performed better than odd – even splitting or partitioning a set of integers > 0 into two 

partitions, by maximising the inner product of the two partitioned vectors using polynomial-time 

approximation algorithms (Karmarkar & Karp, 1982) or usual splitting a dataset into training and test datasets 

in Machine Learning approach. The MCQ test with 50 items, administered among 912 examinees had mean = 

16.24 and sample variance =19.63. Resultant parallel subtests as per the proposed iterative process gave𝑋𝑔
̅̅ ̅ −

𝑋ℎ
̅̅ ̅ = 0; ‖𝑆𝑔

2 − 𝑆ℎ
2‖ = 0.17 and 𝑟𝑔ℎ = 0.38. Based on equation (2), value of   𝑟𝑡𝑡(𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) was 0.93 > Cronbach 

alpha 0.91> Split-half reliability (𝑟𝑔ℎ) 

Benefits of theoretical reliability: 

Theoretical reliability is isomorphic to its definition and facilitates the following:    

(i) Test error variance (𝑆𝐸
2) by equation (3), and 𝑆𝑇

2 = 𝑆𝑋
2 − 𝑆𝐸

2 against observations of Webb et 

al.(2006); Rudner & Schafes (2002) that theoretical 𝑟𝑡𝑡  is not possible since true scores are 

unknown at individual levels and 𝑟𝑡𝑡  is not perfectly precise (Zimmerman, 2007). 

(ii) Testing null hypothesis  𝐻0: 𝑟𝑡𝑡(𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) = 1 is equivalent to 𝐻0: 𝜎𝑋
2 = 𝜎𝑇

2 for which the test 

statistic is 𝐹 =
𝑆𝑋

2

𝑆𝑇
2  and reject 𝐻0 if 𝐹 > 𝐹 𝛼,(𝑁−1,𝑁−1).  

(iii) Chakrabartty (2020) proposed reliability of a test battery (𝑟𝑡𝑡(𝑏𝑎𝑡𝑡𝑒𝑟𝑦) when battery score is 

defined as 𝑌𝑖 = ∑ 𝑊𝑖𝑋𝑖
𝐾
𝑖=1  where 𝑊𝑖 is positive weight assigned to the i-th constituent test (∀ i= 1, 

2, ….,K) and ∑ 𝑊𝑖 = 1, as:   

𝑟𝑡𝑡(𝑏𝑎𝑡𝑡𝑒𝑟𝑦) =  
∑ 𝑟𝑡𝑡(𝑖)𝑊𝑖

2𝑆𝑋𝑖
2 + ∑ ∑ 2𝑊𝑖𝑊𝑗𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗)𝐾

𝑗=1
𝐾
𝑖=1,𝑖≠𝑗  𝐾

𝑖=1

∑ 𝑊𝑖
2𝑆𝑋𝑖

2 + ∑ ∑ 2𝑊𝑖𝑊𝑗𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗)𝐾
𝑗=1

𝐾
𝑖=1,𝑖≠𝑗  𝐾

𝑖=1

    (5) 

where 𝑟𝑡𝑡(𝑖) and 𝑆𝑋𝑖

2 denotes respectively reliability and variance of the i-th test.  

Here, 𝑣𝑎𝑟(𝑌) = ∑ 𝑊𝑖
2𝑣𝑎𝑟(𝑋𝑖)

𝐾
𝑖=1  and 𝑆𝑇

2 of the battery can be evaluated by 

𝑆𝑇(𝐵𝑎𝑡𝑡𝑒𝑟𝑦)
2 =  ∑ 𝑟𝑡𝑡(𝑖)𝑆𝑋𝑖

2 + ∑ ∑ 2𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗)𝐾
𝑗=1

𝐾
𝑖=1,𝑖≠𝑗  𝐾

𝑖=1    (6) 

Instead of weighted sum, if battery score is computed without weights as ∑ 𝑋𝑗
𝐾
𝑗=1  where 𝑋𝑗 denotes score of 

the j-th test, battery reliability is obtained as  

𝑟𝑡𝑡(𝑏𝑎𝑡𝑡𝑒𝑟𝑦) =
∑ 𝑟𝑡𝑡(𝑖)𝑆𝑋𝑖

2𝐾
𝑖=1 + ∑ ∑ 2𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗)𝐾

𝑗=1
𝐾
𝑖=1,𝑖≠𝑗

∑ 𝑆𝑋𝑖
2 + ∑ ∑ 2𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗)𝐾

𝑗=1
𝐾
𝑖=1,𝑖≠𝑗

𝐾
𝑖=1

    (7) 

But addition of scores of independent tests or tests with different degree of correlations is not meaningful and 

may be difficult to interpret. To avoid the problems of interpretation, Streiner et al. (2003) suggested to 

transform the total score to T-score as 𝑇 = 𝑋∗̅̅ ̅ + 𝑆𝐷∗ where 𝑋∗̅̅ ̅ is the desired mean (say 50) and 𝑆𝐷∗ is the 

desired standard deviation (SD) (say10). Shahar (2017) found optimal weights to minimize variance of 

weighted average by Lagrange multipliers and Cauchy-Schwarz inequality. Chakrabartty, (2020) proved that 

positive weight vector 𝑾satisfying ∑ 𝑊𝑖
𝑘
𝑖=1 = 1 minimizes variance (𝑌) = 𝑊𝑇𝑆𝑊 when 𝑾 =

1

2
[𝜆𝑆−1𝑒] where 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459482/#R9
https://journals.sagepub.com/doi/full/10.1177/2059799120918340#bibr22-2059799120918340
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𝑺𝒌×𝒌 denotes variance–covariance matrix of k-items of the test and 𝜆is the Lagrangian multiplier computed as  

𝜆 =
2

𝑒𝑇𝑆−1𝑒
  

(iv) Estimation of True scores and Confidence Interval: 

Chakrabartty (2022) proposed estimates of true scores of individuals (𝑇̂) for a given observed score X, as a 

linear regression i.e. 𝑇̂= 𝛼 + 𝛽𝑋+ ϵ    

or  𝑇̂ = 𝑋̅(1 − 𝛽) + 𝛽𝑋 + 𝜖 = 𝑋 ̅+𝑟𝑡𝑡(𝑋 −𝑋̅) + 𝜖       (8) 

since the regression coefficient 𝛽 = 𝑟𝑋𝑇
𝑆𝑇

𝑆𝑋
  and𝛼 = 𝑋̅(1 − 𝛽).  

However, presence of heteroscedastic errors may make the standard errors calculated by OLS are biased and 

inconsistent, which invalidates standard hypothesis tests (like t-test, F-test) and estimation of confidence 

intervals, leading to incorrect inferences 

Properties: 

Properties satisfied by 𝑇̂ given in equation (8) are: 

- Mean of  𝑇̂ = 𝑇̅ = 𝑋 ̅ 

- 𝑉𝑎𝑟 (𝑇̂) < 𝑉𝑎𝑟(𝑇) ⟹ 𝑇̂  is more homogeneous than the 𝑇 

- Variance of error on true score estimation (𝑆ϵ
2) < error variance of the test (𝑆𝐸

2) 

- 𝑟𝑇𝑇̂  > 𝑟𝑡𝑡 

- Confidence interval of a true score corresponding to observed score (𝑥0) is 

 𝑇̂  ± 𝑡𝑁−2𝑆𝜖√
1

𝑁
+

(𝑥0−𝑋̅)2

(𝑁−1)𝑆𝑋
2        (9) 

where SD of residual is (𝑆𝜖 ) 

- Confidence interval of test reliability is 

 𝑟𝑡𝑡 ± 𝑡𝛼 2⁄ ,(𝑁−2)[
√∑(𝑡𝑖−𝑇̂)2

√𝑁−2√∑(𝑥𝑖−𝑋̅)
2
]       (10) 

(𝑣) Tests of Parallelism:  

Simultaneous testing of 𝑋𝑔
̅̅ ̅ = 𝑋ℎ

̅̅ ̅ and 𝑆𝑋𝑔
2 = 𝑆𝑋ℎ

2  for parallelism of two sub-tests is equivalent to testing 

goodness of fit of linear regression (𝑋𝑔 − 𝑋ℎ) = 𝛼 + 𝛽((𝑋𝑔 + 𝑋ℎ). García-Pérez, (2013) showed that if 𝑋𝑔 and 𝑋ℎ 

follow bivariate normal distribution, F = 
(∑ 𝐷𝑖

2−𝑆𝑆𝐸)/2

𝑆𝑆𝐸/(𝑛−2)
 ~ 𝐹2,(𝑁−2) where SSE denotes sum of squares of residuals 

for linear regression of D on S. Other ways to test parallelism of two tests, suggested by Chakrabartty (2022) 

are as follows:  

* Fit regression equations of 𝑋 = 𝛼1 + 𝛽1𝑋𝑔and also 𝑋 = 𝛼2 + 𝛽2𝑋ℎ and then use likelihood ratio test of equal 

parameter models.   

* Test significance of 
Mean sum of squares (𝑚𝑠𝑠) due to deviation from the hypothesis 

Residual due to separate regression along 
 with corresponding degrees of 

freedom.   

* Testing equality of two correlations i.e.  𝐻0: 𝜌𝑋𝑋𝑔
= 𝜌𝑋𝑋ℎ

by transforming the correlation coefficient to 

Z-scores using r-to-z transformation given by Fisher and statistical resting of significance by the observed Z-

statistic. 

* Each of g-th and h-th subtest consisting of 𝑛

2
 items are parallel ⟺  𝐶𝑜𝑠 𝛽𝑋𝑔 =  𝐶𝑜𝑠 𝛽𝑋ℎ ⟹ 𝛽𝑋𝑔 = 𝛽𝑋ℎ where 𝛽𝑋𝑔 

is the angle between 𝑿𝒈 = (𝑋1𝑔, 𝑋2𝑔, … … . , 𝑋𝑛
2𝑔)𝑇and identity vector𝑰 = (1, 1, … … 1)𝑇. 

The angle between 𝑿𝒉and I (𝛽𝑋ℎ) is defined similarly. Here, 𝐶𝑜𝑠𝛽𝑋𝑔=
∑ 𝑋𝑖𝑔

‖𝑋𝑔‖√𝑁
 as ‖𝑰‖ =

𝑛√𝑁

2
 and 𝐶𝑜𝑠𝛽𝑋ℎ= 

∑ 𝑋𝑖ℎ

‖𝑋ℎ‖√𝑁
  

For parallel subtests (g-th and h-th),  
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 𝑋𝑔
̅̅ ̅ =  𝑋ℎ

̅̅ ̅ ⟹ ‖𝑋𝑔‖ 𝐶𝑜𝑠𝛽𝑋𝑔 =  ‖𝑋ℎ‖ 𝐶𝑜𝑠𝛽𝑋ℎ or  
‖𝑋𝑔‖

‖𝑋ℎ‖
=  

𝐶𝑜𝑠𝛽𝑋ℎ

𝐶𝑜𝑠𝛽𝑋𝑔
  and 

𝑆𝑋𝑔
2 =  

‖𝑋𝑔‖
2

𝑁
−  𝑋𝑔

̅̅ ̅2
 =  𝑆𝑋ℎ

2 =  
‖𝑋ℎ‖2

𝑁
−  𝑋ℎ

̅̅ ̅2
 which implies ‖𝑋𝑔‖

2
= ‖𝑋ℎ‖2  

Thus, for parallel tests, ‖𝑋𝑔‖
2

= ‖𝑋ℎ‖2 ⟹  𝐶𝑜𝑠 𝜃𝑋𝑔 = 𝐶𝑜𝑠 𝜃𝑋ℎ ⟹ 𝜃𝑋𝑔 = 𝜃𝑋ℎ  

Spruill, (2007) found distribution of dot product of two vectors (X.Y) where 

‖𝑋‖ = ‖𝑌‖ = 1, can be approximated by Normal distribution for large sample. The method based on Cosine 

similarity without assuming distribution of 𝑋𝑔 and 𝑋ℎ may be used to assess whether two subtests are parallel.  

Improving test reliability: 

Reliability of MCQ test can be improved by deleting items which are rather ineffective in terms of difficulty 

values(𝐷𝑖𝑓𝑓𝑖) (commonly denoted by 𝑝𝑖) and discriminating values (𝐷𝑖𝑠𝑐𝑖). However, computing 𝐷𝑖𝑓𝑓𝑖  

considering entire data and 𝐷𝑖𝑠𝑐𝑖  ignoring 46% of the data are methodological inconsistent and interpretations 

of relationship between 𝐷𝑖𝑓𝑓𝑖  and 𝐷𝑖𝑠𝑐𝑖are difficult. For example, empirical observation of 𝑟𝐷𝑖𝑓𝑓𝑖,𝐷𝑖𝑠𝑐𝑖 = 0.56 by 

Rao, et al. (2016) contradicts usual idea that very easy items (high 𝐷𝑖𝑓𝑓𝑖  values) and very difficult items (low 

𝐷𝑖𝑓𝑓𝑖  values) give rise to poor discriminating value of items. Sim and Rasiah (2006) found 𝑟𝐷𝑖𝑓𝑓𝑖,𝐷𝑖𝑠𝑐𝑖 > 0 when 

0.8 ≤ 𝐷𝑖𝑓𝑓𝑖 ≤ 1.0 and 

 < 0  when 0 ≤ 𝐷𝑖𝑓𝑓𝑖 ≤ 0.20 and a dome-shaped relationship considering all the items. Further investigations 

on 𝑟𝐷𝑖𝑓𝑓𝑖,𝐷𝑖𝑠𝑐𝑖
was felt needed (Chauhan, et al. 2013) along with effect of deleted items on test reliability and 

difficulty value (𝐷𝑖𝑓𝑓𝑇) and 𝐷𝑖𝑠𝑐𝑇 . Relationship between 𝐷𝑖𝑓𝑓𝑖  and 𝐷𝑖𝑠𝑐𝑖  and their associations with reliability, 

validity are also needed to know effect of deletion of items on test parameters including item-total correlations 

by point bi-serial correlations (𝑟𝑝𝑏𝑠), 𝐷𝑖𝑠𝑐𝑇  or 𝐷𝑖𝑓𝑓𝑇 . 

Computation of item statistics: 

Chakrabartty (2023) proposed following item statistics based on the entire data of a test with m-items taken by 

n-persons: 

𝐷𝑖𝑓𝑓𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑖−𝑡ℎ 𝑖𝑡𝑒𝑚

𝑛
 =

𝑘

𝑛
       (11) 

𝐷𝑖𝑓𝑓𝑇 =
𝑋̅

𝑚
            (12) 

Clearly, 0 ≤ 𝐷𝑖𝑓𝑓𝑖 ≤ 1 and 0 ≤ 𝐷𝑖𝑓𝑓𝑇 ≤ 1. Higher the 𝐷𝑖𝑓𝑓𝑖 ,  easier the item is and higher the 𝐷𝑖𝑓𝑓𝑇, easier is 

the test (high scoring).  

𝐷𝑖𝑓𝑓𝑖  ~ Binomial (n, 𝑝𝑖) with mean 𝑛𝑝𝑖 , variance 𝑛𝑝𝑖(1 − 𝑝𝑖).  

𝐷𝑖𝑠𝑐𝑖 =
𝑆𝑋𝑖

𝑋𝑖̅̅ ̅
 =√

𝑛−𝑘

𝑛𝑘
 = Coefficient of variation of the item (𝐶𝑉𝑖)     (13) 

𝐷𝑖𝑠𝑐𝑇  = 
𝑆𝑋

𝑋̅
 = CV of the test (𝐶𝑉𝑇)         (14) 

Here, 0 ≤ 𝐷𝑖𝑠𝑐𝑖 < 1 unlike [-1, +1] by usual method based on top 27% + bottom 27% of data. 

𝑘 =1 ⟹ 𝐷𝑖𝑠𝑐𝑖  is maximum and 𝑘 = (𝑛 − 1)  ⟹ 𝐷𝑖𝑠𝑐𝑖  is minimum.   

Relationship of item statistics with reliability: 

Chakrabartty (2023) derived the following non-linear relationships: 

𝐷𝑖𝑠𝑐𝑖
2 =

1−𝐷𝑖𝑓𝑓𝑖

𝑛.𝐷𝑖𝑓𝑓𝑖
 = 

1−𝐷𝑖𝑓𝑓𝑖

𝑘
         (15) 

𝑟𝑡𝑡(𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) ∗ 𝐷𝑖𝑠𝑐𝑇
2 = (

𝑆𝑇

𝑋̅
)2        (16) 

https://en.wikipedia.org/wiki/Null_distribution
https://en.wikipedia.org/wiki/Null_distribution
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𝐷𝑖𝑓𝑓𝑇 . 𝐷𝑖𝑠𝑐𝑇 =  
𝑆𝑋

𝑚
          (17) 

𝑟𝑡𝑡 (𝐷𝑖𝑠𝑐𝑇)2 = 
𝑆𝑇

2

𝑆𝑋
2 

𝑆𝑋
2

𝑋̅2  = (
𝑆𝑇

𝑋̅
)2 = (

𝑆𝑇

𝑇̅
)2   since 𝑋̅ =  𝑇̅      (18) 

Cronbach 𝛼 =  
𝑚

𝑚−1
(1 − 

∑ 𝑋𝑖̅̅ ̅2
𝐷𝑖𝑠𝑐𝑖

2𝑚
𝑖=1

𝑋̅2𝐷𝑖𝑠𝑐𝑇
2 )       (19) 

Equation (16) depicting non-linear negative relationship between 𝑟𝑡𝑡(𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) and 𝐷𝑖𝑠𝑐𝑇  indicates that 

increasing both 𝑟𝑡𝑡 and 𝐷𝑖𝑠𝑐𝑇  simultaneously is not possible. Equation (18) shows that product of 

𝑟𝑡𝑡(𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) and (𝐷𝑖𝑠𝑐𝑇)2is equal to  𝐶𝑉𝑇𝑟𝑢𝑒 𝑠𝑐𝑜𝑟𝑒𝑠
2 . Each of equations (15 – 19) holds even after deletion of one 

or more items, despite changes in 𝑆𝑋
2 and 𝐷𝑖𝑠𝑐𝑇  due to item deletions.  

 Criterion of Item deletion: 

As per (15), 𝐷𝑖𝑠𝑐𝑖  changes with k.  𝐷𝑖𝑓𝑓𝑖  = 𝐷𝑖𝑠𝑐𝑖  at the point (𝑘0) where increasing curve of percentage𝐷𝑖𝑓𝑓𝑖  

and decreasing curve of percentage𝐷𝑖𝑠𝑐𝑖  intersect.  Empirically, Chakrabartty (2023) found that two curves 

of a MCQ test containing 50 items cut at 𝑘0= 368 as shown below: 

 
Figure 1: Item-wise percentage 𝐷𝑖𝑓𝑓𝑖  and percentage 𝐷𝑖𝑠𝑐𝑖  curves 

At the point of intersection 𝑘0= 368, difference between item difficulty (0.40395) and item discriminating 

(0.40245) was 0.00149. Right shift of 𝑘0  implies increase in proportion of items with high 𝐷𝑖𝑓𝑓𝑖  (and low𝐷𝑖𝑠𝑐𝑖). 

Value of 𝑘0 is the integer solution of √
𝑛−𝑘

𝑛𝑘
=  

𝑘

𝑛
  

or 𝑘3 = 𝑛(𝑛 − 𝑘)           (20) 

Clearly, deletion of items will change values of 𝐷𝑖𝑓𝑓𝑇 & 𝐷𝑖𝑠𝑐𝑇 .  

Item reliability:  

Reliability of an item of MCQ test (dichotomous variable) is commonly taken as point-biserial correlation (𝑟𝑝𝑏𝑠) 

with test score (continuous variable) as 

0
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𝑟𝑝𝑏𝑠(𝑖) =  
(𝑀𝑝𝑖−𝑀𝑞𝑖)√𝐷𝑖𝑓𝑓𝑖(1−𝐷𝑖𝑓𝑓𝑖)

𝑋̅ 𝐷𝑖𝑠𝑐𝑇
       (21) 

where 𝑀𝑝𝑖: Mean of test score of persons passing the i-th item  and 𝑀𝑝𝑖 + 𝑀𝑞𝑖 = 1.  

Clearly, 𝑟𝑝𝑏𝑠(𝑖)and 𝐷𝑖𝑠𝑐𝑇  are negatively related. High value of 𝑟𝑝𝑏𝑠(𝑖) indicates that subjects passing the i-th 

item, also did well in the test. Clearly, 𝑟𝑝𝑏𝑠(𝑖) ≥ 0 ⟺ (𝑀𝑝𝑖  ≥ 𝑀𝑞𝑖). Items for which 𝑟𝑝𝑏𝑠(𝑖) is very small or 

negative may be deleted or revised.  

Correlation between two items: 

Phi coefficient ( Φ𝑠𝑡) reflects association between s-th and t-th item (each dichotomous) and is given by  Φ𝑠𝑡 =
𝑘11𝑘00−𝑘10𝑘01

√𝑘1.𝑘0.𝑘.0𝑘.1
   where the symbols are clarified in the in the following 2 X 2 contingency table:  

Items s = 1  s = 0 Total 

t = 1 𝑘11 𝑘10 𝑘1. 

t= 0 𝑘01 𝑘00 𝑘0. 

Total 𝑘.1 𝑘.0      N 

Here, ‖𝑋𝑡‖2 =  𝑘1. = number of subjects who passed the 𝑡th item.  

‖𝑋𝑠‖2 = 𝑘.1 = number of subjects who passed the sth item  

𝑘11 =  ∑ ∑ 𝑋𝑖𝑠𝑋𝑗𝑡 =  𝑋𝑠
Τ𝑋𝑡  denotes number of subjects passing both the sth and 𝑡th items. 

𝑘00 = 𝑁 −  ∑ ∑ 𝑋𝑖𝑠𝑋𝑗𝑡 denotes number of subjects failing both the sth and 𝑡th items. 

Clearly,  

𝑘10 =  𝑘1. − 𝑘11= ‖𝑋𝑡‖2 −  ∑ ∑ 𝑋𝑖𝑠𝑋𝑗𝑡.  Similarly, 𝑘01 =  𝑘.1 − 𝑘11 =  ‖𝑋𝑠‖2 −  ∑ ∑ 𝑋𝑖𝑠𝑋𝑗𝑡 and 𝑘00 = 𝑘0. − 𝑘01 =

(𝑁 − 𝑘1.) − 𝑘01 = (𝑁 − ‖𝑋𝑡‖2) − ‖𝑋𝑠‖2 +  ∑ ∑ 𝑋𝑖𝑠𝑋𝑗𝑡 

Thus, Φ𝑠𝑡  can be expressed as function of ‖𝑋𝑡‖2, ‖𝑋𝑠‖2, 𝑋𝑠
Τ𝑋𝑡 and N as:  

 Φ𝑠𝑡 =  
𝑋𝑠

𝑇𝑋𝑡(𝑁−𝑋𝑠
𝑇𝑋𝑡)−(𝑋𝑡

2−𝑋𝑠
𝑇𝑋𝑡)(‖𝑋𝑠‖2−𝑋𝑠

𝑇𝑋𝑡)

√‖𝑋𝑡‖2‖𝑋𝑠‖2(𝑁−‖𝑋𝑡‖2)(𝑁−‖𝑋𝑠‖2)
      (22) 

 

3. Validity 

Validity of a test reflects the extent to which the test is able to measure the envisaged latent trait(s). To find 

test validity, researchers used different approaches like: CFA, Exploratory factor analyses (EFA), Structural 

equation modeling (SEM), etc. and found several factors could be measured by a test. Validity of MCQ was 

investigated based on difficulty and discrimination values of items, both measured in traditional ways of 

ignoring good portion of data (Patil et al. 2022) who found MCQs were reliable but not valid in medical 

education. Considering differential performance on responses and MCQ version of a test at a single time-point 

with 23 items, Ali et al. (2016) assessed validity by Cohen’s d = 
𝑀𝑒𝑎𝑛 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑔𝑟𝑜𝑢𝑝−𝑀𝑒𝑎𝑛𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑔𝑟𝑜𝑢𝑝

𝑆𝐷𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑔𝑟𝑜𝑢𝑝
   

Construct validity:  

Usual way to find construct validity is by correlation between test score (X) and criterion scores (Y) or express 

validity as the beta coefficient of regression Y on X.  The latter require checking normality of residuals. For 

example, if X: 1, 2, 3, ….30 and 𝑌 = 𝑋2, correlation between 𝑌 and 𝑋2 > 0.91, But, regression of  Y on X  or X 

on Y are not justified despite high value of correlation since residuals do not support normal distribution and 

homoscedasticity (same variance),  which are key assumption of Ordinary Least Squares regression, ensuring 

valid statistical inference. Problems of construct validity of a multidimensional test can be avoided by FV taken 

as:  FV=  
𝜆1

∑ 𝜆𝑖
                   (23) 
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where 𝜆1 is the first (maximum) eigenvalue. FV explaining 
𝜆1

∑ 𝜆𝑖
 × 100% of overall variability indicates validity 

of the main factor of the multidimensional test. Such FV avoids two administrations of the test and selection 

of criterion scale with similar factor structures (Parkerson et al. 2013). Significance of the largest eigenvalue 

can be tested by Tracy–Widom (TW) test statistic U = 
𝜆1

∑ 𝜆𝑖
 which follows a TW-distribution i.e., distribution of 

the normalized 𝜆1of a Hermitian matrix for which each eigenvalue is real (Nadler, 2011). Extension of the 

concept of FV to assess factorial validity of battery of tests is suggested as a future study.   

Reliability and Factorial validity:  

Ten Berge and Hofstee (1999) suggested to find reliability of a test containing m-items as a function of 𝜆1 as  

𝛼𝑃𝐶𝐴 = (
𝑚

𝑚−1
) ( 1 −

1

𝜆1
)        (24) 

Clearly, 𝜆1 gives maximum value of 𝛼𝑃𝐶𝐴 which is invariant under linear combination of scores of all the items 

of the test. 

Now, FV = 
𝜆1

∑ 𝜆𝑖
=  

𝜆1

𝑇𝑟𝑎𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒−𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥  
 = 

𝜆1

∑ 𝑆𝑋𝑖
2  

For standardized item scores, 𝐹𝑉𝑍−𝑠𝑐𝑜𝑟𝑒𝑠 of a test containing m-number of items is 
𝜆1

𝑚
 and 

𝑟𝑡𝑡(𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) = 
𝑆𝑇

2

𝑆𝑋
2  = 

𝑆𝑇
2

∑ 𝜆𝑖+ 2 ∑ 𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗)𝑚
𝑖≠𝑗=1

 = 
𝑆𝑇

2 
𝜆1
𝐹𝑉

+2 ∑ 𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗)𝑚
𝑖≠𝑗=1

    (25) 

Equation (25) shows non-linear relationship between 𝑟𝑡𝑡(𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) and 𝐹𝑉𝑍−𝑠𝑐𝑜𝑟𝑒𝑠  where each term is computed 

from data and 𝑆𝑇
2 may be estimated by (𝑆𝑋

2 - 𝑆𝐸
2) (from equation 3).    

Relationship between FV and reliability as per 𝛼𝑃𝐶𝐴  as given in equation (23) is: 

 𝛼𝑃𝐶𝐴 = (
𝑚

𝑚−1
) ( 1 −

1

𝜆1
) = (

𝑚

𝑚−1
) ( 1 −

1

𝐹𝑉.∑ 𝜆𝑖
) = (

𝑚

𝑚−1
) ( 1 −

1

𝑚.𝐹𝑉𝑍−𝑠𝑐𝑜𝑟𝑒𝑠
)   (25) 

The equation (25) indicates higher value of 𝐹𝑉𝑍−𝑠𝑐𝑜𝑟𝑒𝑠 increases 𝛼𝑃𝐶𝐴 

4. Discussions 

The paper describes evaluation of psychometric properties of tests and items used in educational research in 

a comprehensive manner. Major advantages include among others: 

- 𝑟𝑡𝑡(𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) of a test requiring single administration offers significant benefits like computation of 

error variance of test; testing 𝐻0: 𝑟𝑡𝑡(𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) = 1; finding battery reliability and true score variance; 

estimation of true scores and confidence interval for an observed score (𝑥0), confidence interval of 

test reliability, etc.  

- Inter-item reliability as average of item - test correlations has methodological limitations since 

addition of correlations is not meaningful. Instead, 𝑟𝑝𝑏𝑠(𝑖) could be taken as a better measure of item 

reliability. 

- Use of the first eigenvalue (𝜆1) for deriving FV, Cronbach’s alpha (𝛼𝑃𝐶𝐴) of a test and relationship 

between 𝑟𝑡𝑡(𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) and FV of standardized scores. 

- Concept of discriminating value of test (𝐷𝑖𝑠𝑐𝑇) and item (𝐷𝑖𝑠𝑐𝑖) using the entire data.     and their 

relationships with 𝐷𝑖𝑓𝑓𝑇 and 𝐷𝑖𝑓𝑓𝑖  including non-linear negative relationships between 𝑟𝑡𝑡−𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) 

and 𝐷𝑖𝑠𝑐𝑇 ,  expressing Cronbach alpha as function of 𝐷𝑖𝑠𝑐𝑖  𝑎𝑛𝑑 𝐷𝑖𝑠𝑐𝑇 and Item reliability by 𝑟𝑝𝑏𝑠 as 

function of  𝐷𝑖𝑓𝑓𝑖  𝑎𝑛𝑑 𝐷𝑖𝑠𝑐𝑇 .  

- The point of inflection of the negatively slopped reliability- discriminating curve may be taken as the 

test discriminating value for which test reliability is optimal, since for a test, both reliability and 

discriminating value cannot be increased simultaneously.  The point at which the 𝐷𝑖𝑠𝑐𝑖  and 

𝐷𝑖𝑓𝑓𝑖  curves intersects could be used for deletion of items to improve test reliability.   

https://en.wikipedia.org/wiki/Hermitian_matrix
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- A number of statistical tests to test whether two tests are parallel. 

The proposed approach of evaluation of psychometric properties of tests used to assess learning outcomes is 

well applicable also for various e-learning processes like flipped classroom (Osman et al. 2014), blended 

learning (Dos, 2014), synchronous and asynchronous learning (Chao & Chen, 2009) which focus on student-

centered learning than teacher-centered learning to (Bergmann & Sams, 2012).  

5. Conclusions 

The approaches given in the paper with wide application areas help significantly in evaluation of better 

measures of reliability, validity, discriminating value of test and items using the entire data and derived 

relationships including relationship between reliability and validity, each as a function of largest eigenvalue. 

The relationships of reliability with discriminating value, validity etc. may help to maximize one parameter 

(say reliability) for a chosen value of another parameter. Future empirical investigations may explore such 

potentials, comparing power of various statistical tests proposed to test parallelism of two or more sub-tests 

and extension of factorial validity to battery of tests and construction of psychometric quality index of test and 

battery.   
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